无论在学术界、产业界或是公众生活中,人工智能都称得上当前最热门的一个话题,也是目前发展最快的一个领域。自2013年始,以深度学习为代表的神经网络算法为核心,在大数据和图形处理器(gra- phics processing unit, GPU)大规模应用的推动下,在语音识别、图像识别领域达到甚至超过了人类平均水平,迎来了人工智能研究的第三次高潮。
人工智能的迅速发展对各行各业将造成巨大冲击,许多行业可能在这场变革中消失,一些行业将获得大发展。测绘遥感是一个与人工智能关联密切的领域,在这样的背景下既有发展的机遇,也面临很大的危机。
人工智能可以分成6个研究方向:
①机器视觉,包括三维重建、模式识别、图像理解等;
②语言理解与交流,包括语音识别、合成,人机对话交流,机器翻译等;
③机器人学,包括机械、控制、设计、运动规划、任务规划等;
④认知与推理,包含各种物理和社会常识的认知与推理;
⑤博弈与伦理,包括多代理人(agents)的交互、对抗与合作,机器人与社会融合等;
⑥机器学习,包括各种统计的建模、分析工具和计算方法等。
当一个智能体具备以上6个方面的智能时,就可能进入到强智能时代。人工智能的发展过程中许多衍生的技术是可以用于其他领域的,并且有可能推动其他领域的技术变革。
测绘遥感是一个与人工智能密切相关的学科领域。摄影测量与遥感和机器视觉有许多概念、原理、理论、方法与技术上的重叠,它们都是用来感知环境的技术;其区别是摄影测量与遥感主要是感知地球和自然环境,而机器视觉主要是感知智能体关注的目标和环境,但是它们在数学和物理上的原理基本相同。机器学习,特别是最近几年快速发展的深度学习方法,在机器视觉、模式识别、语音理解等方面得到广泛有效的应用,可说是一个革命性的技术,在摄影测量与遥感领域也得到广泛应用。认知与推理是一种更广义的智能,在时空大数据挖掘和智慧城市等方面将大有用武之地。
机器视觉在摄影测量与遥感领域的应用
机器视觉或者称计算机视觉,是一门研究用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等的学科。与计算机视觉相似,摄影测量学是一门利用光学像片研究被摄物体的形状、位置、大小、特性及相互位置关系的学科,简而言之,摄影测量学是以摄影为工具,以测量为目的。事实上,摄影测量学的历史远早于计算机视觉。
摄影测量与计算机视觉在原理、方法和应用上都有很多相通的地方。在进入21世纪后,两者的融合速度又得到进一步提升,它们之间的技术交叉点是无人机和车载移动平台。摄影测量的一个重要发展方向是地面移动测量系统,它可以用来采集道路和街景;而计算机视觉同样关注道路信息的提取与重建,并应用于机器人、城市地图、智能交通和自动驾驶汽车中。同时,无人机航摄技术除了是摄影测量中的一个方便快捷的测量技术,也是计算机视觉所关注的未来焦点。
由于计算机视觉领域研究学者云集,应用领域又很广泛,发展了大量新理论和新方法。摄影测量工作者应在这场技术变革中拥抱新技术,学会跨界融合,并发挥自己的优势,贡献自己的智慧,方能使自己的学科立于不败之地,同时与其他学科一起推动智能科学的发展。
为了促进测绘遥感学科与计算机视觉的交叉融合,紧跟人工智能领域的技术潮流,国内学者组织了专门的人工智能研究团队,积极行动。
机器学习及其在摄影测量与遥感领域的应用
当前人工智能发展的一个重要方向是机器学习。从1955年John McCarthy提出人工智能的概念以来,机器学习就作为人工智能的一个重要方向。基于统计学习的思想不仅长期应用于机器学习,在摄影测量与遥感领域也得到广泛应用,如监督和非监督目标识别与分类方法。基于传统统计学习的遥感影像的监督与非监督分类以及经典的神经元网络方法的研究进展一直很慢,目标识别的准确度和分类精度难以大幅提高,机器学习有效地改变了这一现状。
随后的大量实验表明,无论在图像分类、物体识别、语音识别、遥感应用等关于学习和语义的研究领域,深度学习都占据上风,深度学习的时代由此开启。深度学习在计算机视觉领域得到广泛应用,推动了人脸识别、机器人和无人驾驶车等相关技术的蓬勃发展。由于摄影测量的研究对象也是视觉图像,因此摄影测量也成为深度学习发展最受益的学科之一。
摄影测量的两个主要任务是目标几何定位和属性的提取,包括从二维像片重建三维几何以及地物要素分类。将深度学习应用于几何定位目前还未进入摄影测量研究领域,但已经出现在密切相关的计算机视觉领域,如SfM与SLAM。然而,深度学习方法的定位精度目前尚不能同传统的方法相比,约相差一个数量级。对于三维重建中的关键技术——密集匹配,深度学习已经取得很好的应用效果。如在KITTI等标准数据集上,前10名的方法都是深度学习方法,展现了深度学习方法的应用潜力。
深度学习在摄影测量领域的另一个主要任务,即影像的语义提取方面,则取得了重要进展,并开始普及应用。基于图像的建筑、道路网等地物的提取数十年来一直是热门课题。虽然经典方法取得一定的效果,但距离实用、市场、商业软件尚有一定的距离。卷积神经网络(convolutional neural network, CNN)目前已成为道路网提取的主流方法。通过级联式端到端CNN同时实现了道路网提取及道路中心线提取,与其他方法比较,分类精度更高。通过CNN结合线积分卷积克服了树木遮蔽、房屋阴影造成的道路网残缺问题。通过非监督学习预处理和空间相关性的应用,利用深度学习极大地提高了复杂城市场景的道路提取精度。采用CNN实现了高分辨率多光谱卫星影像的建筑物提取。在影像平面上进行二维卷积,在光谱方向上进行一维卷积,分别提取出影像空间特征和光谱特征,取得了比随机森林和全连接NLP更好的作物分类精度。肖志锋等使用深度学习方法对天地图上的高分辨率遥感影像进行语义检索,能够检索37类地物目标,准确率达90%以上。目前,深度学习已经广泛用于遥感图像的分类、识别、检索和提取,在语义上基本全面碾压了传统的方法。
基于深度学习的方法除了可有效地用于遥感影像的地物分类与目标检索以外,在其他摄影测量与遥感数据处理方面也有广泛用途。例如,胡翔云等采用深度学习方法进行激光雷达(light detection and ranging, LiDAR)点云数据处理。山地林区的点云数据滤波,从点云数据提取数字高程模型,自动化很难实现,一般需要人机交互作业,耗费大量人力物力。
图所示为广东某地的点云提取的地形断面,可以看出,该地区相当复杂,但是用深度学习获取的地面模型断面还是相当准确的(红色曲线)。这说明深度学习方法在点云数据自动处理方面有很好的应用前景。同理,深度学习方法在测绘领域的其他方面,特别是需要人机交互数据处理等方面,如影像变化检测、地图综合,也将发挥重要作用,使之更加智能化和自动化。
基于时空大数据认知与推理
经过几十年的发展,地理信息系统已经有了比较完善的空间分析理论与方法体系。但是,加入了传感网和社会感知设备的时空数据分析与挖掘的理论与方法还不够成熟,目前正处于快速发展之中。
时空数据可分为两类不同类型,一类来自测绘遥感及地面传感网的反映地球表层及环境特征的时空数据;另一类是来自社会感知设备,包括互联网、智能手机、导航设备、可穿戴设备、视频监控设备以及社会调查获取的时空数据,它主要反映人为活动及社会经济形态特征。
第一类数据比较规范,适于数值分析与计算,所以通常采用数学模型来进行模拟及预测分析。例如,陈能成等采用航空航天遥感与传感网集成技术建立了长江流域对地观测传感网系统,该系统除包含航空航天遥感数据、基础地理信息数据以外,还包含了气象、水文、航标、土壤湿度等32种共上万个地面传感网实时数据。通过这些实时动态数据,能对流域内的水库和河流的水位、水量、泥沙、河道进行分析和预测,实现水利的智能调度,为蓄水发电和防洪抗旱等提供决策支持。
来自社会感知设备的时空数据是一种新型数据,它的结构和形式更加多样。例如互联网数据主要以多媒体的文本数据为主,导航轨迹数据是流式的点坐标数据,视频监控数据是图像数据,而智能手机数据则有文本、点坐标和图像等多种数据。这些数据复杂多样,有些时空标签明显,有些则需要经过分析处理才能添加时空标签。目前多个领域的学者,包括计算机应用、测绘遥感、地理信息科学、城市规划与管理等,都对社会感知的时空数据感兴趣,认为该数据是社会科学与信息领域交叉的新兴学科,是建设智能城市和智慧社区的有效手段。
人工智能正在掀起一场技术革命和产业革命,测绘遥感既是人工智能技术的受益者,又是人工智能技术的贡献者。摄影测量从静态走向动态与实时,并将与计算机视觉深度融合;遥感应用人工智能技术解决影像解译、信息自动提取问题;互联网、物联网、传感网获取的海量时空数据是人工智能的血液,为机器学习、智能抉择与服务提供支撑。
面对人工智能的迅猛发展,摄影测量工作者是仅跟踪应用计算机视觉成果,还是主动作为;是仅应用现有的深度学习方法,还是构建新的遥感深度学习网络;社会感知信息如何与测绘遥感信息融合用于揭示自然物理空间发展和人类社会行为及活动规律,发展更高级更复杂的人工智能;这些是测绘遥感工作者面临的新任务和新挑战。
版权声明:文章来源于《武汉大学学报·信息科学版》2018年12期,第一作者:龚健雅, 博士, 教授, 中国科学院院士, 长期从事地理信息理论和摄影测量与遥感基础研究。登载此文出于传递更多信息之目的,版权归原作者及刊载媒体所有,如本文中图片或文字侵犯您的权益,请联系我们。
猜你喜欢:
说说地理信息系统那些久远的发展历史
飞燕遥感喜得甲级测绘资质证书!【荣获“五甲”资质】
金秋十月,华夏中原,中国测绘学会主办的中国测绘地理信息科学技术年会10月16日-17日在郑州召开,第十二届中国测绘地理信息技术装备博览会同期开幕。本届年会以“发展新质生产力 促进...
金秋九月,丹桂飘香。由中国测绘学会工程测量分会主办,飞燕航空遥感技术有限公司(以...
为进一步搭建校企供需对接平台,助推高校与优势企业深度合作,推动科技创新与产业创新...
继国家基础地理信息中心委托的吐鲁番地区无人机航摄项目验收后,赣南地区航摄项目也按...
飞燕遥感携实景三维全流程产品体系与解决方案亮相大会,展示了多模态新型数据采集装备...
飞燕遥感组织开展了2023年测绘法宣传日暨国家版图意识宣传活动。通过近年的宣传展板、...
电话:025-83216189
邮箱:frank.zhao@feiyantech.com
地址:江苏省南京市玄武区红山街道领智路56号星河World产业园3号楼北8楼
微信公众号
总经理微信
版权所有:飞燕航空遥感技术有限公司 © 2019 备案号:鄂ICP备19029994号-1 苏ICP备20022669号-1 鄂公网安备:420106020021194号 简体中文/English